Dept. of Math. & Comp. Sci.

Math. 101 Second Exam.

Dec. 20, 2001

Time allowed: 75 min.

## Answer the following questions

(3 pts) Find 
$$\frac{dy}{dx}$$
, if  $y = \tan \sqrt{x^2 + 1} + \cos^5(x^3 + 5)$ .

(3 pts) State Rolle's Theorem. If  $f(x) = \cos 2x + 2\cos x$ , show that f satisfies the conditions of Rolle's theorem on the interval  $[0, 2\pi]$  and find a number  $c \in (0, 2\pi)$  that satisfies the conclusion of the theorem.

(4 pts) Find an equation of the tangent line to the graph of

$$x^2y + \sin(xy + y^2) = x + 2$$

at the point whose y-coordinate is 0.

(4 pts) Use differentials to find an approximate value of  $\sqrt{(1.01)^2 + 3}$ .

(4 pts) A closed box with a square base is to be made to have a volume of  $64 ft^3$ . If the cost of the material used is 50 cents per  $ft^2$  and if there is no waste of material Find the dimensions that will minimize the cost of the material.

(7 pts) Let

$$f(x) = \frac{x-2}{x^2}$$

- (a) Find the intervals on which f is increasing or decreasing, and find the extrema of f (if any).
- (b) Find the intervals on which the graph of f is concave downward or concave upward, and find the points of inflection (if any).
- (c) Find the horizontal and vertical asymptotes for the graph of f (if any).
- (d) Sketch the graph of f.